什么是近红外光谱?它如何工作?
发布时间:2023-10-07
浏览次数:1017
NIR 光谱或近红外分光光度法 (NIRS) 是一种吸收光谱方法,通过测量化合物或溶液吸收的近红外辐射量来帮助确定化合物或溶液的化学成分。
NIR 光谱或近红外分光光度法 (NIRS) 是一种吸收光谱方法,通过测量化合物或溶液吸收的近红外辐射量来帮助确定化合物或溶液的化学成分。顾名思义,近红外光谱在近红外电磁光谱中工作。近红外辐射波比可见光稍长,覆盖700nm至2500nm的光谱。与中波长和长波长红外辐射相比,近红外光谱不是热光谱。换句话说,近红外辐射与您从明火或太阳中感受到的热量无关。
因此,近红外辐射不是用于热成像(想想铁血战士穿过中美洲雨林跟踪阿诺德·施瓦辛格),而是出现在光纤、电视遥控器,当然还有近红外光谱中。
近红外光谱如何工作?
云顶天宫不同分光光度法(包括近红外光谱法)背后的主要原理是比尔-朗伯定律。根据该定律,溶液中某种化合物的浓度决定了该溶液吸收多少光(无论是可见光还是红外光)。浓度越高,吸收特定波长的辐射就越多。然而,近红外光谱法与其他光谱法的不同之处在于吸收背后的机制。
例如,在紫外-可见光谱中,化合物对可见光的吸收是根据构成化合物的电子对电磁辐射的吸收来测量的。
当电子吸收辐射时,它进入所谓的激发态,在该态中它“充电”的能量比其正常(“基”)状态更多。然而,电子不会长时间保持兴奋状态,并会在不久后衰变到基态,释放出与它们吸收的等量的能量。这个过程也称为电子跃迁。
由于不同化学元素的电子需要不同的能量才能进入激发态,因此紫外-可见光谱可以通过测量该能量来确定其性质。近红外辐射与物质具有独特的相互作用,NIRS 的工作原理有所不同。近红外辐射不是激发化学元素原子内的电子,而是影响整个分子。更具体地说,它影响分子的振动运动——使分子内的原子粘在一起的键。
当暴露于近红外辐射时,分子吸收电磁光子并启动称为振动转变的过程——拉伸、收缩、弯曲、来回摇摆等。由于这种机制,近红外光谱通常被称为振动吸收光谱。
但这种分子振动如何帮助通过近红外光谱确定物质的化学成分呢?这与分子在振动跃迁状态下的行为有关。根据构成分子的化学元素,分子将具有特定的振动模式。让我们以水分子为例。水分子由两个部分带正电的氢原子和一个部分带负电的氧原子组成。当暴露于特定频率的红外辐射时,水分子也会被以下更高能量振动模式激发:不对称拉伸,其中一个氢键收缩,而另一个氢键延伸对称拉伸,在此期间两个氢键收缩或拉伸剪式弯曲,在此过程中两个氢原子相互来回摆动,就好像它们被剪刀刺穿一样。确定分子在暴露于红外辐射时进入哪种振动模式,以及将分子激发到更高振动状态所需的辐射频率,是 NIRS 背后的工作原理。
云顶天宫水分子由两个氢原子和一个氧原子组成。因此,它通过氢键结合在一起,在 NIRS 过程中氢键会成为近红外波的目标。
相关产品
-
凝视式高光谱成像仪原理及优势解析
凝视式高光谱成像仪采用面阵探测器,一次曝光即可获取目标区域的二维图像信息,同时通过光谱分光系统获取不同光谱波段的信息,从而形成高光谱数据立方体。这种成像方式不..
-
推扫式高光谱成像仪有什么优势?
推扫式高光谱成像仪利用线阵探测器进行成像,这种成像方式具有较高的空间分辨率和光谱分辨率,能够快速获取大面积的高光谱图像数据。本文对推扫式高光谱成像仪原理及优势..
-
摆扫式高光谱成像仪原理是怎么的?有什么优点?
摆扫式高光谱成像仪通过摆镜的摆动来实现对目标区域的扫描成像,可以实现较大范围的扫描,能够覆盖较大的视场角。本文对摆扫式高光谱成像仪原理及优点做了介绍,对摆扫式..
-
高光谱成像仪常见的分光方式有哪些?
高光谱成像仪常见的分光方式有哪些?高光谱成像仪根据分光原理的不同,可以分为棱镜分光原理、光栅分光原理、傅里叶变换分光原理和滤光片分光原理等不同的类型。本文对这..